MTH 310 HW 6 Solutions

March 4, 2016

Section 3.3, Problem 35f

Prove $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ is not isomorphic to \mathbb{Z}_{16}.
Answer. Note that if they were isomorphic, then there would be an isomorphism $f: \mathbb{Z}_{16} \rightarrow$ $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$. But this implies that, since all isomorphisms send 0 to $0, f(0)=0$. But since $a+a+a+a=0$ for all $a \in \mathbb{Z}_{4}$, if $f(1)=(a, b) \in \mathbb{Z}_{4} \times \mathbb{Z}_{4}$, we have $f(0)=0=(a+a+a+a, b+$ $b+b+b)=(a, b)+(a, b)+(a, b)+(a, b)=f(1)+f(1)+f(1)+f(1)=f(1+1+1+1)=f(4)$. Therefore since $0 \neq 4$ in \mathbb{Z}_{16}, f is not injective. (Even more easily, we can note that $\mathrm{f}(1)$ must be the identity (1,1) in $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ since f is a homomorphism of rings with identity.)

Section 3.3, Problem 38a

Prove if $f: \mathbb{F} \rightarrow R$ is a homomorphism from a field to a ring, if $f(c)=0$ for some nonzero $c \in \mathbb{F}$, then f is the zero map.
Answer. Assume there is some nonzero element $c \in \mathbb{F}$ for which $f(c)=0$. Let $x \in \mathbb{F}$. Then as c is nonzero, there is some c^{-1} so $c c^{-1}=1$, so $f(x)=f(1 x)=f\left(c c^{-1} x\right)=$ $f(c) f\left(c^{-1} x\right)=0 f\left(c^{-1} x\right)=0$.

Section 4.1, Problem 4

Find polynomials $f(x), g(x), h(x), p(x)$ so that $\operatorname{deg}(f(x)+g(x))=\max (\operatorname{deg}(f(x), \operatorname{deg}(g(x)))$ and $\operatorname{deg}(h(x)+p(x))<\max (\operatorname{deg}(h(x), \operatorname{deg}(p(x)))$.
Answer. The polynomials $f(x)=2 x^{2}, g(x)=h(x)=x^{2}+x$, and $p(x)=-x^{2}$ satisfy this. Answers may vary.

